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This paper shows how Monte Carlo methods can be used to evaluate multidimensional 
integrals that occur in Glauber scattering theory. A detailed discussion of the various 
Monte Carlo methods is given. The methods are used to obtain the proton-proton 
elastic scattering differential cross section, where the proton is composed of three 
quarks with hard cores. It is found that including a quark hard core has no effect on the 
differential cross section for a fixed rms quark distance. 

I. INTRODUCTION 

The Glauber approximation [l] for the high-energy scattering of composite 
systems has had a wide range of application in the last 15 years. It has been applied 
to problems in molecular, atomic, nuclear, and particle physics with a great deal of 
success. Inelastic [2] as well as elastic scattering phenomena have been investigated 
using this approximation. The multiple scattering nature of the approximation 
allows the total scattering amplitude to be written as a series of terms which depend 
on the number of constituent-particle scatters that were effective during the 
system-system collision. Thus, at small angles or small momentum transfers, the 
scattering amplitude is determined by single and double scattering processes, 
while at increasingly larger angles higher-order scattering processes begin to 
dominate. The total elastic scattering amplitude can be calculated provided one can 
specify how the constituent particles scatter as free particles and how they are 
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bound, i.e., specifying the particle-particle scattering amplitudes and the system 
wavefunctions. 

To evaluate the total system-system scattering amplitude, a many-dimensional 
integral over the constituent particle coordinates and also a two-dimensional 
integral over the impact parameter need be calculated. In general, for the problem 
of an n-particle system scattering from a system of n’ particles, one must evaluate 
an integral of (3n - 3) + (3n’ - 3) + 2 dimensions. Only when rather simple 
functional forms are used for the system wavefunctions and particle-particle 
scattering amplitudes can one hope to evaluate these integrals explicitly. Previous 
calculations on particle-nucleus scattering [3] and elementary particle scattering 
in the quark model [4] have used Gaussians or sums of Gaussians for the functional 
forms of the constituent-particle scattering amplitudes and system wavefunctions 
or form factors. The introduction of more complex functions results in a many- 
dimensional integration that is at least formidable if not impossible to evaluate by 
analytic methods. It is the purpose of this paper to investigate how Monte Carlo 
techniques might be employed to obtain accurate numerical solutions to the many- 
dimensional integrals encountered in the Glauber theory. 

Monte Carlo methods have increased in popularity as faster computing machines 
have been developed over the last few decades. Today, on present computers, one 
is able to evaluate a given statistical estimator many thousands of times in a matter 
of minutes. Such large sample sizes are needed in many Monte Carlo calculations 
to meet the accuracy requirements. 

Schmid and others [5] have used Monte Carlo methods successfully to calculate 
binding energies of light nuclei, using a Rayleigh-Ritz variational procedure to 
minimize the expectation value of the Hamiltonian which included hard core 
potentials and functions with hard core factors. In this type of analysis one en- 
counters many-dimensional integrals over the constituent nucleon coordinates 
which can be handled conveniently and accurately by Monte Carlo methods. 

The accuracy of Monte Carlo methods is rather insensitive to the number of 
dimensions involved but very sensitive to large or rapid changes in the integrand 
as a function of any of the integration variables. In evaluating the Glauber integrals, 
the major problem lies in the integration over the impact parameter b because of 
the appearance of the oscillating factor exp(in * b), where a is the momentum 
transferred between the colliding systems. As n increases in magnitude, this factor 
destroys the “nice” behavior we would require of the integrand for Monte Carlo 
calculation. We will discuss this in more detail in the main text. 

In this paper we will explore various methods of maximizing the efficiency of 
Monte Carlo evaluations of the many-dimensional integrals encountered in the 
Glauber theory. 

In Section 11 we will exhibit the type of integral we plan to evaluate. A short 
explanation of how Monte Carlo techniques can be applied to evaluating integrals 
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will follow in Section III. We will then turn our attention to a particular problem, 
namely, the elastic scattering of two systems containing three particles each with 
hard core wavefunctions-i.e., proton-proton elastic scattering where the protons 
are composed of three quarks. In Section V we will discuss various approaches 
to evaluating the resulting integrals. 

II. GLAUBER APPROXIMATION 

The scattering amplitude as a function of the momentum transfer A for n-particle 
system-n’-particle system collisions in the Glauber approximation can be written as 

F&A) = k/2+ )” d2beiA’” I -0. I dql -.a dqn dq; .-. dq;, 

. Ulb-ll *** Qn) Ml1 -*- qk), (1) 

where k is the momentum of the incident system in the lab frame and b is the 
impact parameter which is the component of the displacement between centers of 
mass of the two systems in the plane having a normal in the direction k. The 
coordinates q1 *** qla and ql’ *** q:. are the coordinates of the constituent particles 
of the incident and target systems, respectively. The coordinates s1 -0. s, and 
Sl 

’ . . . s’,, are projections of the q-coordinates on the plane having normal k. The 
wavefunctions of the systems initially and finally are given by the functions ui , 
ui’ and ur , ur’. The x-functions are called the phase shift functions and are related 
to the interaction potential between the constituent particles. The phase shift 
xii’ for the ith particle in the unprimed system scattering from the i’th particle 
in the primed system is 

. m 
xii,@ - si + sit) = -j$ f V&b - si + si’, z) dz, --oo 

where Vi,, is the interaction potential. The summation & in Eq. (1) is over all 
two-particle interactions; i.e., ll’, 12’,..., In’, 21’, 22’,..., 2n’,..., nl’,..., nn’. It is 
useful to define the profile function 

r(b - si + s;~) = 1 - exp[ix&b - si + $,)I (3) 
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so that the expression in curly brackets in Eq. (1) can be expanded as 

CXP [i 1 X(b - Si + s;*)] - 1 = C P&h - S, + s:*) 
ii’ ii’ 

1 1 Fii,(b - Si + Si*) Fjjt(b - Sj + Sip) 
ii’ ~3’ 
ii’>jl’ 

x F,,,(b - s* + s;,) 
, 

(4) 

where the summations are performed over all two-particle interactions that can 
occur between the two systems such that no combination appears twice. The 
profile functions Fii, are related to the free particle-particle scattering amplitudes as 

At*(S) = & J‘ eis’br,,$b) d2b. (5) 

When Eq. (4) is substituted into Eq. (l), the expression for the total scattering 
amplitude becomes a sum of a large number of many-dimensional integrals, each 
containing a single F-term or product of more than one r, such as PiiFj,, or 
r<i,Fjj,Pk,* or higher. The integrals which include only Fii* terms are called the 
single scatter contribution. Those having Fit* * fij, terms are called double 
scattering contributions, etc. At d = 0, the single and double scatter terms 
dominate, accounting for greater than 95 % of the contributions. As 1 A 1 increases, 
higher-order contributions become more important (see, for example, Ref. [4]). 

III. MONTE CARLO EVALUATION OF DEFINITE INTEGRALS 

In this section we will discuss some of the basic ideas and techniques of Monte 
,Carlo methods applied to evaluating definite integrals. Consider the m-dimensional 
integral 

I = j-a: j-a: *” Ia: f (x1 , x2 ,..., x,,,) dxl dx, -*- dx, . (6) 

The integration variables x1 , x2 ,..., x, can be considered continuous random 
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variables having a probability density function P(q , x2 ,..., x,,J dxl dx, --- dx,,, 
defined in ul < x1 < bl , a2 Q x2 < b, ,..,, a,,, f x,,, < b, and normalized to 
unity. Rewriting Eq. (6) as 

we see that the integral is just the expectation of the function 

&I, x2 ,--*, &z> = ml 3 x2 ,***, &J/P(Xl 1 x2 >***, %?A (8) 
i.e., 

z = B{ &l , x2 ,-a*, &Jl. (9) 

An unbiased estimator of this expectation over N-observations of the random 
variables x1 , x2 ,..., xm is the simple average 

z = $ g Ax:, xzi,..., x,9, 

where xr’ is the ith observation of the random variable xj . An unbiased estimator 
of the variance is 

var(Z) = N ’ --q *g [g(xl’, X2f ,..., xl?l” - f [$ gw, xz’,..., xm9]‘l 
I- 

(11) 

and the standard error is 
AZ = [var(Z)/N]‘/“. (12) 

For most problems, the probability density function is taken to be a product of 
single-variable functions, i.e., 

P(xl , x2 ,..., x,,J dx, dx, --- dx, = P,(xl) P2(x2) --- P,(x,) dxl dx, -.a dx, . (13) 

This is done to facilitate the generation of the observations of the random variables 
since simplicity and speed of evaluation of Eqs. (10) and (11) are important factors 
in successful and accurate Monte Carlo. (For an example of conditional or biased 
Monte Carlo see Ref. 161.) 

The accuracy of a Monte Carlo calculation depends on two basic elements, as 
can be seen from Eq. (12), i.e., the variance and the number of observations, N. 
To increase the accuracy of a given calculation, either the number of observations 
is increased or the variance is reduced. Some common variance-reducing techniques 
are stratified sampling, importance sampling, and control variates, among other. 
The simplest scheme is called crude Monte Carlo, where the probability density 
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function has the form of a product of rectangular or uniform distribution functions 
of the form 

P(xl , x2 ,..., x,J dx, dx, .a- dx, = U,(x,) U,(x,) ... Uyfi(x,,) dx, dx, ... dx,,, , (14) 

where 

Uj(xj) dx, = 
I 
m - 4, aj d xJ < bj , o 
3 otherwise. 

The estimator of the integral Eq. (6) becomes 

I = 4$ fi (bj - n,)] * f j-(x,“, xzz ,..., xmi). 
J4 i=l 

(16) 

Thus the integration is replaced by the simple average of the integrand over many 
observations of the random variables. When the integrand varies rapidly between 
the limits of integration, it is advantageous to break the integral into smaller parts 
and evaluate each part separately using crude Monte Carlo; this is called stratified 
sampling. Other times it may be possible to “subtract out” the rapidly varying 
part using an analytic function which can be readily integrated. This is a type of 
control variate procedure. Another popular technique is importance sampling and 
one which we employ in our calculations. Here the probability density functions 
for the random variables are chosen so that they behave on a gross scale much like 
the integrand itself. In a certain sense, importance sampling techniques “factor out” 
the variations of the integrand which would otherwise yield a large variance in 
crude Monte Carlo. 

There is a compromise which one must make in all variance-reducing schemes; 
in attempting to reduce the variance of a calculation, one inherently increases the 
complexity and work to perform the generation of the random variables or 
evaluation of the integrand or both. Hence a profitable variance-reducing technique 
is one which will yield a more accurate result; i.e., smaller d1 with the same amount 
of labor (or computer time). 

IV. GLAUBER APPROXIMATION WITH HARD CORES 

We consider the particular problem of the high-energy elastic scattering of two 
systems each containing three of the same type of particle. The scattering amplitude 
for the free scattering of these constituent particles will be Gaussian in form. This 
problem is of interest in high-energy elastic scattering of protons in the quark 
model, where each proton is composed of three quarks [4]. Also, if the constituent 
particles are nucleons, not distinguishing protons and neutrons, this would be 
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triton-triton elastic scattering. In any case, this problem exemplifies the general 
features of composite elastic scattering problems that are of interest in nuclear 
physics [3] and elementary particle scattering in the quark model [4]. 

For this problem, the expression for the phase shift function, Eq. (4), simplifies to 

[exp (i z xii0 - si + ~2)) - 11 

= 9Fll,(b - s1 + sl’) - [18r,,(b - s1 + s;) r,,(b - s2 + s,‘) 
+ 18rdb - s, + ~1) rdb - sl + s2’)l 
+ W-d - sl + ~1’) r,,O - s, + ~2’) r,,,oO - s, + ~31) 
+ 36r,,,@ - s, + s,‘) r,,,(b - sl + ~2,) r,,,(b - s, + ~3,) 

+ 36r,,,(b - sl + ~1,) I’,,@ - s1 + s,‘) r&h - s2 + s;) 
+ 6rdb - sl + s;) r,,,(b - s, + ~2’) r,,,tb - s, + s,‘)l 
+ HO terms. (17) 

We will include only up to third-order terms in the Monte Carlo calculations. 
For most calculations this is sufficient. Placing Eq. (17) into Eq. (l), we see that 
the total scattering amplitude is seven multidimensional integrals. 

When the system wavefunctions are chosen to the Gaussians or sums of Gaussians 
these integrals can be evaluated analytically (see Ref. [4]). When hard core factors 
are included the evaluation becomes extremely difficult if not impossible. Monte 
Carlo methods, and in particular, importance sampling techniques, can be applied 
to this problem in a natural way. 

Let the system wavefunctions be of the form 

I e1 3 r2 ,r3)12 =Cexp ffz$l -&I~-%~ +r2 +r3), (18) 

where, following Schmid [5], 

fHC = n drij) = !?(I b - r2 I) * gtl r2 - r3 I) *Al r3 - rl I), 
i>j 

and the scattering amplitude for the constituent particles when scattering as free 
particles is of the form 

f&l) = f(0) exp{--B2 A2/2}, (20) 

where f(0) and B2 are in general complex constants. 
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For e1aSt.k scattering ar = Ui , up’ = u,’ in Eq. (1) and we take Eq. (18) as the 
wavefunction for both systems. The resulting expression for the total scattering 
amplitude to third-order scattering terms becomes 

F ~lasticW = & J d2b etA.h [Nil F&b)], 

where 

TN = / drl dr2 dr, dr,' dr,' dr,' I u(r]. , r2 , r,)j2 1 u(rl’, r,‘, rs’)12 

- rrdh s, 2 s2 2 s, 9 %‘, sz’, %I’) 
and 

r, = 9r,,* , r2 = -ISr,,,r,,~ , 
r, = -lSr,,,r,,, , I’, = 6r,,,r,,nr,p , 
r, = 36rl,lr121r,,~, r, = 36r,,~r,,~r,,~ . 
r, = 6rl,nr12~rl,n, 

V 

(21) 

(22) 

(23) 

Let us consider the seven integrals of Eq. (22), ignoring for the moment the 
integration over the impact parameter. It is convenient to make the following 
change of variables [5]. 

u = 5 + r2 , u’ = rl’ + r2’, 
v = r1 - r2 , v’ = rl’ - r2’. (24) 

This change enables us to write Eq. (22), using Eq. (18), for the wavefunction, as 

f,(h) = c2 1 du dv du’ dv’ exp[-(uz/oU2 + u2/uv2) - (u’~/u~~ + ~‘~/a,~)] 

- bb, V) hw, ~7 . rdh U, V, u’, ~7. (25) 

This form of the integral has the feature that the integration variables in the 
exponential terms do not appear in cross terms like u * v. The observations of the 
new coordinates will be generated according to the normal probability density 
functions 

Vu:, a) = (TK&?)-~‘~ exp{-(l/az)(uz2 + uv2 + u,‘)}, 
(26) 

N(ui2, v) = (n-~$)-~‘~ exp{-(l/o;2)(v,2 + vY2 + v,2>}, 

with similar expressions for the primed coordinates. 
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For the “no hard core” case where the hard core is unity, i.e., 01 = fi = 0, the 
m’s can be calculated analytically. Thus, we can use this limit to check the relia- 
bility of the Monte Carlo calculations. The parameters 0;’ and u.’ are chosen 
carefully. As a rule of thumb they should be chosen slightly larger than the wave- 
function parameters o, and a, . If they are chosen too small, poor convergence 
will result. 

To illustrate this point, consider the integral 

A = (2/3y 1-1 & e-(l-~)*pYo:*. (27) 

Using the Monte Carlo method described in Section III we write this integral as 

A = jm L;f(x>/&>l g(x) dx, --m (28) 

where f(x) = (2/~r)‘/~ exp[-(1 - x)“] exp[-x2/a”] and we choose g(x) = 
[l/(~&~)l/~] exp[-x2/L2]. An estimate of A is the average over M observations of x, 

A = (l/M) d/z (ol’/ol) : exp[-(1 - x,)“] * exp[-xj2/a2], 
j=l 

(2% 

where xj is the jth observation. Choosing 01 = 1, the exact value of this integral 
is A = 0.6065. Table I shows the results of the Monte Carlo calculation when (Y’ 
is 0.1, 0.5, 1.0, and 1.5 for increasing sample sizes. It is seen that the results for 
01’ = 0.1 are quite a bit smaller than the exact result and the convergence to the 
correct result is slow at best. At 01’ = 0.5, the results are beginning to look reason- 
able although the approach to the exact result is still slow. For CL’ = 1.0 there is 
greater agreement and convergence is quite satisfactory, being accurate to about 
1% with a sample size of 10,000. 

TABLE I 

Monte Carlo Estimates of Eq. (29) for Various Sample Sizes, I@, and 
Various Values of the Parameter 01’, the Generation ParameterO 

a’ 
\ M 0.1 0.5 1.0 1.5 

500 0.415 0.633 0.598 0.644 
1000 0.379 0.612 0.593 0.618 
5ooo 0.424 0.622 0.603 0.613 

10,000 0.513 0.626 0.599 0.615 

a The value of the integral for (Y = 1 is 0.6065. 
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For the “no hard core” case the results of the Monte Carlo calculations are shown 
in Fig. 1. Each of the seven F(b) were calculated at 16 values of b using 1000 
observations at each point. The exact result is also shown. The standard errors 
are smaller than the symbols, and so are not drawn in the figure. Agreement is 
quite good. 

Two other quantities are also calculated simultaneously with the Ps. The 
normalization constant, Rnorm , defined by 

R nOrm = (TU;)-~ (m;?)-” j- d% d3v d3u’ d3v’ ( u(u, v)j2 1 u(u’, v’)j’, (30) 

which for the “no hard core” calculation can be found exactly to be 

R nOrm = (TU,‘)~ (~u,2)~/(m;)~ (z-u;:)~ = (1 .I)-” = 0.56447, (31) 

when 02 = 1.1~~~ and ai2 = 1.1~ v2. Also the rms distance (r2)l12 is calculated 

(r2) = 1 d3u d3v r2 1 u(u, v)12/j d3u d3v 1 u(u, v)l” = $ou2. (32) 

The value of z(b) is calculated using 1000 estimates at each value of b. Thus a 
total of 16,000 estimates is required to obtain the results shown in Fig. 1. Table II 
lists the values of <r2) and Rnorm for various runs. The values of the parameters 
used in these calculations are Re B2 = 3.75, Im B2 = 5.0, Ref(0) = -0.18, 
Imf(0) = 1.1, and uU2 + Re B2 = 8.63, where the units are (GeV/c)-2. 

TABLE II 

Values of Monte Carlo estimates of <P) and Rncarm for three 
independent runs for the no hard core case 

<r*> R nmm 
Exact value = 7.32 Exact value = 0.5645 Sample size 

7.35 0.5646 16,000 
7.33 0.5649 16,000 
7.39 0.5625 16,004 

When the hard core is “turned on,” we proceed in exactly the same manner, 
choosing the random observations to have the same probability density functions, 
Eq. (26). We expect that more estimates will be needed to achieve the same order of 
accuracy as in the “no hard core” case since many of the estimates will give zero 
contributions due to the hard core factors. 
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It is easy to estimate the fraction of the observations which give zero contribution. 
We define the number of effective observations or estimates, Nerf, as the number 
of observations which give nonzero values for the wavefunction. To evaluate Nerr 
for a given value of b, we consider the probability density function of the inter- 
particle variable V = rl - r9 , which is 

P(v) = (m~$!)~~‘~ exp[-0f”(v,” + vy2 + vZ2)]. (33) 

The probability density function for the magnitude of v is found by integrating 
P(v) over the angle variables: 

p(J u I) = (731~~~)~~‘~ * 4flv2e-uploC4. (34) 

The probability that 1 v ) is less than or equal to /I is the probability that the hard 
core factor g(v) will be zero, i.e., 

P(I U 1 < p) = s” P(I v I) do = h(~ro~~)-~‘~ jB u2e-v2/d* dv. 
0 0 

(35) 

Integrating by parts, this integral becomes 

where 

and 
f(t) = [l/(2+“] * exp(-t2/2). (37) 

Equation (32) is the probability that an estimate will give zero contribution when 
the density function contains a hard core of size /3. The integrand in the actual 
calculation contains six hard core factors corresponding to the three inter- 
particle displacements in each of the two protons. Thus the probability for a 
nonzero contribution is 

[l - P(l 0 I d /w”. (38) 

The number of effective estimates is given in terms of this probability and the 
actual number of estimates 

Neil = [l - P(I v I ,( ma . Nsctus1 . (39) 

For hard cores of size /I = 1, 2, and 3 (GeV/c)-l and for Nactuai = 1000, the 
number of effective estimates is 

&f&3 = 1) = 941, iI&& = 2) = 598, N&3 = 3) = 215. 
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Using the criterion that the number of effective estimates for hard core calculations 
be equal to the total number of estimates for the “no hard core” case to obtain 
the same accuracy, we can approximate the number of estimates we need to 
achieve the same accuracy as in a calculation where no hard core factors are 
included, i.e., the calculation of the previous section. We adjust Nactuai so that Nerr 
equals the number of estimates for the “no hard core” case. For example, to 
obtain results of the same accuracy as the previous section where 1000 estimates 
were used we would need 

N actual = 1000/0.941 = 1062 for p = 1 .O (GeV/c)-l, 
N actual = 1000/0.598 = 1672 for /I = 2.0 (GeV/c)-l, 
N actual = 1000/0.215 = 4651 for /I = 3.0 (GeV/c)-l. 

The function r((b) for three different-sized hard cores, 01 = 1.5 and /I = 1.0, 
01 = 2.5 and /3 = 2.0, GIL = 3.5 and p = 3.0, was investigated and in Table III 
we list the values of (r2) and Rnorrn obtained in these calculations. It is seen that 
<r2> is increased quite significantly over the “no hard core” case and increases as 
/I increases. In Fig. 2, the function r(b) is shown for the hard core parameters 
01 = 3.5 and fl = 3.0, obtained by taking 6000 estimates at each value of b. Also 
shown are the “no hard core” analytic results (solid lines) so that the deviations 
can be more readily ascertained. The presence of hard core effects is observed in the 
reduced peaks of r(b) near b = 0. Three independent runs were made for each of 
the three hard core sizes investigated. For 01 = 1.5 and p = 1.0, 1100 estimates 
were used at each value of b. For (Y = 2.5 and /I = 2.0, 3000 estimates were used. 

TABLE III 

Values of (P) and Rnorm for Various Sizes for the Hard Core 

Run identification LY B R norm <rV 

lHC1 1.5 

2HCl 1.5 

3HC1 1.5 

lHC2 2.5 2.0 0.271 8.54 

2HC2 2.5 2.0 0.280 8.51 

3HC2 2.5 2.0 0.279 8.48 

lHC3 3.5 3.0 0.0829 10.30 

2HC3 3.5 3.0 0.0833 10.31 

3HC3 3.5 3.0 0.0829 10.26 

1.0 

1.0 

1.0 

0.497 

0.495 

0.479 

7.64 

7.60 

7.61 
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Of course the object of this calculation is to obtain the scattering amplitude 
and differential cross section. To achieve this end we must take the Fourier 
transform of the functions TN(b) to obtain the scattering amplitude. Using a grid 
method for integrating the transform integral of the point by point functions 
TN(b) obtained by the Monte Carlo calculations of the previous sections works 
well for small values of the momentum transfer squared, AZ, but due to the oscillating 
factor exp(iA * b) this method gives poor results for large values of B, specifically, 
for this problem, LP > 0.5 (GeV/c)2. An alternate procedure, which is the one 
we describe here, is to x2-fit the numerical functions ri(b), i = 1, 7 determined by 
Monte Carlo methods to analytic functions whose transform properties are known. 
The goodness of the fits will be the most significant factor in determining whether 
the amplitude obtained in this way is a reliable result or not. A set of different 
runs is necessary in order to obtain an idea of the accuracy of the results, i.e., for 
each set of parameters the complete calculation of the amplitude and cross section 
is to be repeated several times with independent sets of estimates so as to test for 
reproducibility and accuracy. It is reasonable to fit our Monte Carlo f,(b)- 
functions to a series of Gaussians of the form 

cm(b) = 5 Ty’ exp(-jE#) = Tp’ exp( -E&‘) + Tp’ exp(-2Eib2) + *se, 
j=l (40) 

where the subscript i specifies the scattering process, i.e., i = 1, 7 and Ty’ and 
Ei are complex. Each scatter contribution is fit separately, which gives a total of 
seven fits for each run. 

Having obtained Ei and Ti’), we can find the scattering amplitude for each type 
of scatter by taking the Fourier transform of the fitting function, which is 

J(d) = F (Tp’/Ei) * exp( --d 2/4jEi) (41) 

and the total scattering amplitude, up to third order in scatter processes, i.e., 
i = 1, 7, is 

F,,(d) = i f (Tf’/&) exp[--d2/4jE,]. 

The x2-fitting procedure minimizes the function 

(42) 

where M is the number of values of b at which ryC(bk) has been evaluated using 
Monte Carlo methods and dFTC(bk) is the standard error. The superscript MC 
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represents the Monte Carlo values while FIT denotes the value of the fitting 
function given by Eq. (40). 

We will require that the fits have at least a confidence level of 0.01. In terms of 
the maximum allowable value for x2 as a function of the number of degrees of 
freedom, v, this means that for 

v = 24, XhAX = 43.0; 

v = 25, &A* = 44.3; 

v = 26, xLAX = 45.6. 

The number of degrees of freedom is defined as the number of data points minus 
the number of parameters in the fitting function. The number of parameters in 
the fitting function of Eq. (40) is 2N + 2, where N is the number of terms in the 
expansion. The total number of data points, M, is twice the number of points at 
which F(b) is calculated using Monte Carlo methods since r?(b) has both real 
and imaginary parts. Thus the number of degrees of freedom for these fits is 

v=M-2N-2. (44 
As we have mentioned before, three independent runs were made for each of the 
three hard core sizes investigated, i.e., (Y = 3.5, B = 3.0; 01 = 2.5, /3 = 2.0; 
and 01 = 1.5, /3 = 1.0. The results of the fits of the Monte Carlo function fd’s for 
the “no hard core” case and the three different-sized “hard core” cases to the 
function rrrT(b) of Eq. (40) are shown in Table IV. The values of xi2, for i = 1, 7, 
for the different runs indicate that the fits are acceptable. 

The differential cross section in terms of the scattering amplitude is found using 

du/dt = = I F&U2 = s-r 1 i&X412. (45) 

TheJ;(d)‘s are the Fourier transforms of the fit functions r7 of Eq. (41). Figs. 3-6 
show the differential cross sections for the “no hard core” case and the three 
“hard core” cases. The “no hard core” results in Fig. 3 are compared to the 
exact result and agreement is seen to be quite good. The dashed lines in the figures 
indicate the extreme values of do/dt determined by the Monte Carlo-Fit method 
we have been describing. The solid lines in Figs. 4-6 for the “hard core” cases are 
the exact calculations where the density function parameter oU2 has been adjusted 
to match the values of (r2) in Table III for the various hard core sizes. 

There is no noticeable difference between the “no hard-core” cross sections with 
(r2) the same as in the hard core case and the corresponding hard core results. 
Thus we conclude for the range of hard core values we have investigated that for 
a fixed rms quark distance (r2)lj2 there is no hard core effect on the proton-proton 
differential cross sections. 
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TABLE IV 

Results of xa Fits for Three Independent Runs” 

Degrees of 
freedom 

(4 

X&AX 
for 

confidence 
levels 

0.05 0.01 Xl2 X2= X2 X2 xsa X2 

24 36.4 43.0 12 12 21 24 18 33 10 
24 36.4 43.0 20 17 16 23 30 26 17 
24 36.4 43.0 26 23 19 21 32 25 11 

Run 
identification 
- 

1NHC 
2NHC 
3NHC 

lHC1 26 38.9 45.6 22 17 26 12 26 28 19 
2HCl 26 38.9 45.6 35 19 28 20 21 18 27 
3HCl 26 38.9 45.6 41 24 25 16 19 37 24 

lHC2 24 36.4 43.0 19 20 15 22 22 18 19 
2HC2 24 36.4 43.0 25 33 18 10 26 30 21 
3HC2 24 36.4 43.0 23 37 17 26 33 41 24 

lHC3 24 36.4 43.0 25 20 12 17 22 18 28 
2HC3 24 36.4 43.0 20 19 28 20 35 30 48* 
3HC3 26 38.9 45.6 20 17 29 25 33 19 42 

o Runs are for each of the following: (1) NHC, no hard core case; (2) HCl, hard core IY = 1.5, 
j3 = 1.0; (3) HC2, hard core OL = 2.5, fl = 2.0; (4) HC3, hard core OL = 3,5, ,5 = 3.0. The xx 
values for the fits to the seven scattering terms, which include up to third-order scattering terms, 
are shown in the last seven columns. Also listed is the maximum value of x* for the two con- 
fidence levels 0.05 and 0.01. 

This method of fitting the F(b)-functions has the advantage of avoiding the 
evaluation of the Fourier transform integral by numerical methods. 

The complete integration of the expression for the total scattering amplitude, 
r;(d) of Eq. (11, including the Fourier transform integration over the impact 
parameter, can be done by Monte Carlo methods. This can be accomplished by 
generating random values of the impact parameter and the quarks coordinates and 
evaluating the multidimensional integral of Eq. (1) by the importance sampling 
technique of Section III. We have attempted to calculate F(A) with no hard core 
present using this “brute force” method. Each Monte Carlo estimate consists of 
14numbers; U, , u, , u, , u, , v, , U, , uz’, uy’, uz’, vz’, till’, tjz’, b, , and b, . The resulst 

58rlr9/4-3 
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d ~w,c)Z] 

FIG. 3. The differential cross section as obtained by Monte Carlo fit method for no hard core 
falls within the dashed line region. The exact result is the solid line. 

for values of A2 from 0 to 1.0 GeV/c2 at intervals of 0.1 (GeV/c)2 are shown in 
Table V. Each 1000 estimates requires 19 set of central processing (cp) time on the 
Lehigh CDC 6400 computer. The scattering amplitude ZQl) can be found fairly 
accurately for small values of L3 2. However, for values of A2 greater than 
0.4 (GeV/c)2 with sample sizes of 2000 or greater, the standard errors are greater 
than the values of the scattering amplitude. 

Since we know the exact result for the “no hard core” (NHC) case we can 
estimate the amount of cp time necessary to achieve a given accuracy. If we require 
that du/dt be calculated to an accuracy of about 50 % for the 11 points between 
A2 = 0 and 1.0 at intervals of 0.1, we can estimate the amount of cp time necessary 
in the following way. First of all, from Table V we notice that the variance in the 
calculated values of both ReF(d) and ImF(d) is statistically constant over the 
desired range of AZ. Also the standard errors for Re F(d) and Im Z’(A) are approx- 
imately equal for a given sample size. Thus 

d/n = (Lll/Lll’)g. (46) 

Taking n’ = 1000, then from Table V, AZ w 0.35. To find the number of estimates 
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0.0 0.7 1.4 2.1 2.8 3.5 4.2 

FIG. 4. The differential cross section as obtained by Monte Carlo fit procedure for hard core 
size OL = 1.5 and j3 = 1.0 falls within the dashed line region. The solid line is the exact result 
when the no hard core wavefunction is adjusted to give the same (9) as in Table IV for this hard 
core size. 

n needed to obtain the accuracy dl for the real or imaginary part of the scattering 
amplitude we use 

n = (0.35/LlZ) - 1000. 

To meet the requirement of -50 % accuracy in du/dr at each value of d, we will 
need about 25 % accuracy in the larger of the real or imaginary part of the scattering 
amplitude since 

du/dt = rr[Re21;(d) + ImSF(L)]. (47) 

The estimated sample sizes and cp times needed to fulfill the stated requirements 
for each value of z12 are shown in the last two columns of Table V. 

Of course the accuracy requirements here are by no means stringent. Also it 
should be kept in mind that the maximum value of LP for this proposed calculation 
is only 1.0 (GeV/c)2. Furthermore, we should stress that these estimated cp times 
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IO-‘,,,,,, 4.2 

FIG. 5. The differential cross section as obtained by Monte Carlo fit procedure for a hard 
core size a: = 2.5 and fi = 2.0 falls within the dashed line region. The solid line is the exact result 
when the no hard core wavefunction is adjusted to give the same <rP) as in Table IV for this 
hard core size. 

are for NHC calculations. When we include the hard core part of the density 
function, the computation time will increase depending on the size of the hard core. 
In short, if we should perform a “brute force” calculation of this type requiring 
50 % accuracy in du/dt at each value of A2 between 0 and 1.0 (GeV/c)2 at intervals 
of 0.1 (GeVlc), the total amount of cp time would be approximately 5000 sec. 
This is rather a large amount of time for such poor accuracy and small range of A2. 

In comparison, the cp time required to obtain the NHC results of Fig. 3 was 
1020 sec. This number includes the 300 set to generate each of the three sets of 
r”c(b)-functions and 40 set to fit each set. 

For the hard core cases, Figs. 46, the amount of time required increases 
rapidly as the value of /I in Eq. (19) is increased. The cp times required for the 
HC calculations are shown in Table VI. The larger hard core sizes as discussed 
previously necessitated many more estimates due to the many “zero” contributions. 

Perhaps the major drawback of the Monte Carlo-Fit method is the fitting phase. 
It may not always be possible to construct an analytic function as we did in Eq. 40 
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FIG. 6. The differential cross section as obtained by Monte Carlo fit procedure for a hard 
core size OL = 3.5 and j3 = 3.0 for the three computer runs. The dashed line is the exact result 
when the no hard core wavefunction is adjusted to give the same <rP> as in Table IV for this hard 
core size. 

TABLE VI 

Summary of cp Times: The cp Times Required (on the CDC 6400) to Perform Monte Carlo 
Fit Calculations for Three Runs for the Various Hard Core Sizes Investigated 

Number of Monte Carlo Number Fitting cp Total cp time 
estimates at cp time/run of time (xc) (W 

B aa each b XC l-UllS 

1.0 1.5 1100 -330 3 -40 -1110 
2.0 2.5 3000 -750 3 -55 -2415 
3.0 3.5 6ooo -1500 3 -60 -4680 

which would fit the TF(b)-functions in a reliable way. In summary, we should note 
that the basic requirements of the fitting function are: 

(1) It must be able to fit the point-by-point PTC(b)-functions well. 
(2) It must have known Fourier transform properties. 



GLAUBER SCATTERING INTEGRALS 375 

CONCLUSIONS 

In conclusion, we find that the Monte Carlo method can be used to solve the 
multidimensional integrals that occur in Glauber theory. We find no noticeable 
effect of a quark hard core for a given rms quark distance for the hard core values 
and wavefunctions we have investigated in proton-proton scattering. 
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